Low rank updated LS-SVM classifiers for fast variable selection

Fabian Ojeda Johan A.K. Suykens Bart De Moor

Department of Electrical Engineering
Katholieke Universiteit Leuven
ESAT-SCD Division
Leuven, Belgium

May 23, 2008
Goals

- Select a subset of variables without degrade in prediction.
- Use of forward and backward search schemes.
- Exploit any (if possible) structure of the predictor.
- Reduce computational complexity.

Elements

- Objective function → easy/cheap to evaluate.
- Search procedure → efficient.
- Predictor → simple, yet powerful
Outline

Variable selection
 Methods

Approach

Least squares support vector machines (LS-SVM)

Leave-one out estimator
 Fast leave-one-out computation

Rank-one modifications
 Updating LS-SVM

Experiments
Variable selection

Definition
Given data $\mathcal{D} = \{(x_i, y_i)_{i=1}^n \mid x_i \in \mathbb{R}^d, y_i \in \{-1, +1\}\}$. Let the set of all variables $\mathcal{U} = \{u_1, \ldots, u_k, \ldots, u_d\}$.

Find a small subset $\mathcal{U}^* \subset \mathcal{U}$, $\mathcal{U}^* \in \mathbb{R}^p$, $p < d$, optimizing a primary objective function $J(\mathcal{U}^*)$, i.e. $J(\mathcal{U}^*) \leq J(\mathcal{U})$.
Variable selection

Motivation

- *Effectiveness*: Reduce implementation costs.
- *Data understanding*: Identifying relevant factors.

Remark

- *NP-hard*: Combinatorial nature 2^d.
- Multiple and different subsets may give same solution.
Methods

Univariate
One variable at a time.
- Statistical tests: fisher, t-test.
- Mutual information criteria.

Multivariate
- Filter techniques: independent of the predictor.
- Wrapper: Use predictor to evaluate subsets of variables and a search method, e.g. SFS, SBS.
- Embedded techniques: Variable selection embedded in the predictor, e.g. $\ell_1 - SVM$, $\ell_0 - SVM$.
Approach

Elements

► Search method: forward and backward search.
► Objective function: leave-one-out error (LOO).
► Predictor/Classifier: least-squares support vector machines (LS-SVM).
► Speed up: rank-one matrix modifications.[Ojeda et al., 2008]
Least squares support vector machines (LS-SVM)

[Suykens et al., 2002]

Primal formulation

\[
\begin{align*}
\min_{w,b,e} & \quad \frac{1}{2} w^T w + \gamma \frac{1}{2} \sum_{i=1}^{n} e_i^2 \\
\text{s.t.} & \quad y_i = w^T \varphi(x_i) + b + e_i \\
& \quad i = 1, \ldots, n
\end{align*}
\]

Model: \(f(x) = w^T \varphi(x) + b \)

Properties

- Solution to a linear system. \(O(n^3) \).
- No sparseness.

Dual formulation

\[
\begin{bmatrix}
\Omega + \gamma^{-1} I_n & \mathbf{1} \\
\mathbf{1}^T & 0
\end{bmatrix}
\begin{bmatrix}
\alpha \\
b
\end{bmatrix} =
\begin{bmatrix}
y \\
0
\end{bmatrix}
\]

\(\Omega_{ij} = K(x_i, x_j) \)

\(f(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x) + b \)
Alternative factorization

Positive definite system

\[H = \Omega + \gamma^{-1}I_n \]

\[
\begin{bmatrix}
H & 0 \\
0 & 1^T H^{-1} 1
\end{bmatrix}
\begin{bmatrix}
\alpha + H^{-1} 1b \\
b
\end{bmatrix}
= \begin{bmatrix}
y \\
1^T H^{-1} y
\end{bmatrix},
\]

Model parameters

\[b = 1^T H^{-1} y \left(1^T H^{-1} 1\right)^{-1} \]
\[\alpha = H^{-1} (y - b 1) \]

Solution solely in terms of \(H^{-1} \).
Leave-one out (LOO) estimator

Definition

\[
\text{error} = \frac{1}{n} \sum_{i=1}^{n} \ell(f(-i)(x_i), y_i)
\]

- Unbiased estimator of the generalization error [Lachenbruch, 1967].
- Requires \(n\) runs of the learning algorithm.
- Non-smooth criterion.
- Alternatives: generalization error bounds [Chapelle et al., 2002].
Fast leave-one-out

Efficient leave-one-out → exploiting the structure of LS-SVM.

LS-SVM block structure

\[
\begin{bmatrix}
H \\
1^T \\
0
\end{bmatrix}
= \begin{bmatrix}
A_{11} & a_{12} \\
A_{12}^T & a_{22}
\end{bmatrix}
= A
\]

Closed-form

LOO residual for the \(i\)-th pattern is [Cawley, 2006]

\[
r_{i}^{(-i)} = y_{i} - \hat{y}_{i}^{(-i)} = \frac{\alpha_{i}}{(A^{-1})_{ii}}
\]

\[
\text{error} = \frac{1}{n} \sum_{i=1}^{n} \left(r_{i}^{(-i)}\right)^{2}
\]

\[s = -1^T H^{-1} 1, \quad \nu = H^{-1} 1\]

- Naive: \(n\) times LS – SVM → \(\mathcal{O}(n^4)\).
- Fast LOO: One LS – SVM → \(\mathcal{O}(n^3)\).
Rank-one updates/downdates

Update a given matrix M once altered in some minimal sense.

Sherman-Morrison formula

Given $H^{-1} \in \mathbb{R}^{n \times n}$. Consider $M = H + URV^T$, where $U, V \in \mathbb{R}^{n \times q}$, $R \in \mathbb{R}^{q \times q}$, then

$$(H + URV^T)^{-1} = H^{-1} - H^{-1}UZ^{-1}V^TH^{-1}$$

where $Z = R^{-1} + V^TH^{-1}U$. Key: If $q \ll n$, then R and Z easier to invert than M [Golub and Van Loan, 1989].

Symmetric rank-one update $q = 1$

If $q = 1$, i.e. $U = u \in \mathbb{R}^{n \times 1}$ and $R = 1$, the formula becomes

$$(H + uu^T)^{-1} = H^{-1} - \frac{H^{-1}uu^TH^{-1}}{1 + u^TH^{-1}u}$$
Updating LS-SVM solution

Compute LOO each time a variable is selected/removed. Linear kernels can be written in outer product form

$$\Omega = \begin{bmatrix} u_1, \ldots, u_d \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_d \end{bmatrix}^T = \sum_{k=1}^{d} u_k u_k^T$$

$$H = \Omega + \gamma^{-1}I_n = \sum_{k=1}^{d} u_k u_k^T + \gamma^{-1}I_n$$

At the level of variable \(k\) we have

$$H_k = \sum_{l=1}^{k-1} u_l u_l^T + \gamma^{-1}I_n + u_k u_k^T$$

$$H_k = H_{k-1} + u_k u_k^T$$

Avoid matrix inversions and use already available information.
Rank-one modifications

Updating LS-SVM

Updating LS-SVM solution

▶ Forward: Compute H_k^{-1} at selection step k from H_{k-1}^{-1} at step $k - 1$, upon addition of variable u_k.

$$H_k^{-1} = H_{k-1}^{-1} - \frac{H_{k-1}^{-1} u_k u_k^T H_{k-1}^{-1}}{1 + u_k^T H_{k-1}^{-1} u_k}$$

No inverse matrix operations!!

▶ Backward: Compute H_k^{-1} at removal step k from H_{k+1}^{-1} at step $k + 1$, upon removal of variable u_k

$$H_k^{-1} = H_{k+1}^{-1} + \frac{H_{k+1}^{-1} u_k u_k^T H_{k+1}^{-1}}{1 - u_k^T H_{k+1}^{-1} u_k}$$

Only the inverse of the matrix with all variables.
Experiments

Data

- Seven benchmark datasets.

Algorithms

- SVM-RFE with and without retraining [Guyon et al., 2002].
- Naive LS-SVM with forward selection.
- LS-SVM with fast LOO and rank-one modifications.

Validation

- Computational complexity.
- 10-fold cross-validation.
Experiments

Benchmark data

<table>
<thead>
<tr>
<th>Data</th>
<th>Training size</th>
<th>Test size</th>
<th>Realizations</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer</td>
<td>200</td>
<td>77</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Diabetes</td>
<td>468</td>
<td>300</td>
<td>100</td>
<td>8</td>
</tr>
<tr>
<td>Flare solar</td>
<td>666</td>
<td>400</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>German</td>
<td>700</td>
<td>300</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Heart</td>
<td>170</td>
<td>100</td>
<td>100</td>
<td>13</td>
</tr>
<tr>
<td>Splice</td>
<td>1000</td>
<td>2175</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>Waveform</td>
<td>400</td>
<td>4600</td>
<td>100</td>
<td>21</td>
</tr>
</tbody>
</table>

Microarray data

- Leukaemia. $n = 72, d = 7129$.
- Colon cancer $n = 60, d = 2000$.
Experiments

Computational time in Colon data

Forward algorithms

Backward algorithms
Experiments

Classification performance

Benchmark data

- LS-SVM + rank-one update: Sequential forward selection (SFS).
- LS-SVM + rank-one downdate: Sequential backward elimination (SBE).
- Minimal number of variables between brackets []

<table>
<thead>
<tr>
<th>Data set</th>
<th>LS-SVM</th>
<th>LS-SVM+SFS</th>
<th>LS-SVM+SBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer</td>
<td>0.268 (0.044)</td>
<td>0.268 (0.052) [2/9]</td>
<td>0.264 (0.049) [2/9]</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.221 (0.013)</td>
<td>0.234 (0.017) [6/8]</td>
<td>0.234 (0.017) [6/8]</td>
</tr>
<tr>
<td>Flare solar</td>
<td>0.334 (0.014)</td>
<td>0.329 (0.018) [2/9]</td>
<td>0.326 (0.019) [2/9]</td>
</tr>
<tr>
<td>German</td>
<td>0.252 (0.020)</td>
<td>0.245 (0.021)</td>
<td>0.242 (0.022) [16/20]</td>
</tr>
<tr>
<td>Heart</td>
<td>0.151 (0.026)</td>
<td>0.157 (0.032)</td>
<td>0.157 (0.032)</td>
</tr>
<tr>
<td>Splice</td>
<td>0.161 (0.007)</td>
<td>0.161 (0.006) [27/60]</td>
<td>0.161 (0.007) [28/60]</td>
</tr>
<tr>
<td>Waveform</td>
<td>0.133 (0.006)</td>
<td>0.132 (0.006)</td>
<td>0.147 (0.009)</td>
</tr>
</tbody>
</table>
Experiments

Classification performance

Leukaemia data

![Graph showing test error vs number of ranked genes for Leukaemia data.]

Colon cancer data

![Graph showing test error in backward elimination for Colon cancer data.]

Test error in backward elimination. Alon data set.

- SVM-RFE1 – retraining
- SVM-RFE2 – no retraining
- LS-SVM+FastLO+RankDowndate
Use of leave-one-out as ranking criterion.

Rank-one modification into the linear kernel matrix to update inverse.

Applicable in high dimensional data.

Update, not recompute!
Selected references

Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs.
In Proc of the International Joint Conference on Computational Neural Networks (IJCNN’06).

Choosing multiple parameters for support vector machines.

Matrix computations.

Gene selection for cancer classification using support vector machines.
Machine learning, 46.

Lachenbruch, P. (1967).
An almost unbiased method for the probability of misclassification in discriminant analysis.

Low rank updated LS-SVM classifiers for fast variable selection.

Least Squares Support Vector Machines.
World Scientific, Singapore.